Assisted protein folding at low temperature: evolutionary adaptation of the Antarctic fish chaperonin CCT and its client proteins

نویسندگان

  • Jorge Cuellar
  • Hugo Yébenes
  • Sandra K. Parker
  • Gerardo Carranza
  • Marina Serna
  • José María Valpuesta
  • Juan Carlos Zabala
  • H. William Detrich
چکیده

Eukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT-CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT-CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = -1.9 to +2°C), and of the cow (body T = 37°C). We examined the temperature dependence of the binding of denatured CPs (β-actin, β-tubulin) by fish and bovine CCTs, both in homologous and heterologous combinations and at temperatures between -4°C and 20°C, in a buffer conducive to binding of the denatured CP to the open conformation of CCT. In homologous combination, the percentage of G. gibberifrons CCT bound to CP declined linearly with increasing temperature, whereas the converse was true for bovine CCT. Binding of CCT to heterologous CPs was low, irrespective of temperature. When reactions were supplemented with ATP, G. gibberifrons CCT catalyzed the folding and release of actin at 2°C. The ATPase activity of apo-CCT from G. gibberifrons at 4°C was ∼2.5-fold greater than that of apo-bovine CCT, whereas equivalent activities were observed at 20°C. Based on these results, we conclude that the catalytic folding cycle of CCT from Antarctic fishes is partially compensated at their habitat temperature, probably by means of enhanced CP-binding affinity and increased flexibility of the CCT subunits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes.

The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 beta-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb...

متن کامل

The Cytosolic Chaperonin CCT/TRiC and Cancer Cell Proliferation

The molecular chaperone CCT/TRiC plays a central role in maintaining cellular proteostasis as it mediates the folding of the major cytoskeletal proteins tubulins and actins. CCT/TRiC is also involved in the oncoprotein cyclin E, the Von Hippel-Lindau tumour suppressor protein, cyclin B and p21(ras) folding which strongly suggests that it is involved in cell proliferation and tumor genesis. To a...

متن کامل

Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding

Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stack...

متن کامل

The Effect of Chaperonin Buffering on Protein Evolution

Molecular chaperones are highly conserved and ubiquitous proteins that help other proteins in the cell to fold. Pioneering work by Rutherford and Lindquist suggested that the chaperone Hsp90 could buffer (i.e., suppress) phenotypic variation in its client proteins and that alternate periods of buffering and expression of these variants might be important in adaptive evolution. More recently, To...

متن کامل

Protein folding: Versatility of the cytosolic chaperonin TRiC/CCT

Efficient de novo folding of actins and tubulins requires two molecular chaperones, the chaperonin TRiC (or CCT) and its novel cofactor GimC (or prefoldin). Recent studies indicate that TRiC is exquisitely adapted for this task, yet has the ability to interact with and assist the folding of numerous other cellular proteins.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014